2,386 research outputs found

    No evidence for mass segregation in massive young clusters

    Full text link
    Aims. We investigate the validity of the mass segregation indicators commonly used in analysing young stellar clusters. Methods. We simulate observations by constructing synthetic seeing-limited images of a 1000 massive clusters (10^4 Msun) with a standard IMF and a King-density distribution function. Results. We find that commonly used indicators are highly sensitive to sample incompleteness in observational data and that radial completeness determinations do not provide satisfactory corrections, rendering the studies of radial properties highly uncertain. On the other hand, we find that, under certain conditions, the global completeness can be estimated accurately, allowing for the correction of the global luminosity and mass functions of the cluster. Conclusions. We argue that there is currently no observational evidence of mass segregation in young compact clusters since there is no robust way to differentiate between true mass segregation and sample incompleteness effects. Caution should then be exercised when interpreting results from observations as evidence of mass segregation.Comment: 10 pages, 12 figures, typos corrected. Download a high-resolution version at http://www.astro.up.pt/~jascenso/mseg_v2.pdf (1 MB

    Describing the soil physical characteristics of soil samples with cubical splines

    Get PDF
    The Mualem-Van Genuchten equations have become very popular in recent decades. Problems were encountered fitting the equations¿ parameters through sets of data measured in the laboratory: parameters were found which yielded results that were not monotonic increasing or decreasing. Due to the interaction between the soil moisture retention and the hydraulic conductivity relationship, some data sets yield a fit that seems not to be optimal. So the search for alternatives started. We ended with the cubical spline approximation of the soil physical characteristics. Software was developed to fit the spline-based curves to sets of measured data. Five different objective functions are tested and their results are compared for four different data sets. It is shown that the well-known least-square approximation does not always perform best. The distance between the measured points and the fitted curve, as can be evaluated numerically in a simple way, appears to yield good fits when applied as a criterion in the optimization procedure. Despite an increase in computational effort, this method is recommended over the least square method

    Disks in the Arches cluster -- survival in a starburst environment

    Get PDF
    Deep Keck/NIRC2 HK'L' observations of the Arches cluster near the Galactic center reveal a significant population of near-infrared excess sources. We combine the L'-band excess observations with K'-band proper motions, to confirm cluster membership of excess sources in a starburst cluster for the first time. The robust removal of field contamination provides a reliable disk fraction down to our completeness limit of H=19 mag, or about 5 Msun at the distance of the Arches. Of the 24 identified sources with K'-L' > 2.0 mag, 21 have reliable proper motion measurements, all of which are proper motion members of the Arches cluster. VLT/SINFONI K'-band spectroscopy of three excess sources reveals strong CO bandhead emission, which we interpret as the signature of dense circumstellar disks. The detection of strong disk emission from the Arches stars is surprising in view of the high mass of the B-type main sequence host stars of the disks and the intense starburst environment. We find a disk fraction of 6 +/- 2% among B-type stars in the Arches cluster. A radial increase in the disk fraction from 3 to 10% suggests rapid disk destruction in the immediate vicinity of numerous O-type stars in the cluster core. A comparison between the Arches and other high- and low-mass star-forming regions provides strong indication that disk depletion is significantly more rapid in compact starburst clusters than in moderate star-forming environments.Comment: 51 pages preprint2 style, 22 figures, accepted by Ap

    Non-adiabatic effects in long-pulse mixed-field orientation of a linear polar molecule

    Full text link
    We present a theoretical study of the impact of an electrostatic field combined with non-resonant linearly polarized laser pulses on the rotational dynamics of linear molecules. Within the rigid rotor approximation, we solve the time-dependent Schr\"odinger equation for several field configurations. Using the OCS molecule as prototype, the field-dressed dynamics is analyzed in detail for experimentally accessible static field strengths and laser pulses. Results for directional cosines are presented and compared to the predictions of the adiabatic theory. We demonstrate that for prototypical field configuration used in current mixed-field orientation experiments, the molecular field dynamics is, in general, non-adiabatic, being mandatory a time-dependent description of these systems. We investigate several field regimes identifying the sources of non-adiabatic effects, and provide the field parameters under which the adiabatic dynamics would be achieved.Comment: 16 pages, 16 figures. Submitted to Physical Review

    The proper motion of the Arches cluster with Keck Laser-Guide Star Adaptive Optics

    Get PDF
    We present the first measurement of the proper motion of the young, compact Arches cluster near the Galactic center from near-infrared adaptive optics (AO) data taken with the recently commissioned laser-guide star (LGS) at the Keck 10-m telescope. The excellent astrometric accuracy achieved with LGS-AO provides the basis for a detailed comparison with VLT/NAOS-CONICA data taken 4.3 years earlier. Over the 4.3 year baseline, a spatial displacement of the Arches cluster with respect to the field population is measured to be 24.0 +/- 2.2 mas, corresponding to a proper motion of 5.6 +/- 0.5 mas/yr or 212 +/- 29 km/s at a distance of 8 kpc. In combination with the known line-of-sight velocity of the cluster, we derive a 3D space motion of 232 +/- 30 km/s of the Arches relative to the field. The large proper motion of the Arches cannot be explained with any of the closed orbital families observed in gas clouds in the bar potential of the inner Galaxy, but would be consistent with the Arches being on a transitional trajectory from x1 to x2 orbits. We investigate a cloud-cloud collision as the possible origin for the Arches cluster. The integration of the cluster orbit in the potential of the inner Galaxy suggests that the cluster passes within 10 pc of the supermassive black hole only if its true GC distance is very close to its projected distance. A contribution of young stars from the Arches cluster to the young stellar population in the inner few parsecs of the GC thus appears increasingly unlikely. The measurement of the 3D velocity and orbital analysis provides the first observational evidence that Arches-like clusters do not spiral into the GC. This confirms that no progenitor clusters to the nuclear cluster are observed at the present epoch.Comment: 22 pdflatex pages including 12 figures, reviewed version accepted by Ap

    High-resolution Laser Spectroscopy of NO2 just above the X2 A1-A2B conical intersection: Transitions of K_=1 stacks

    Get PDF
    The complexity of the absorption spectrum of NO2NO2 can be attributed to a conical intersection of the potential energy surfaces of the two lowest electronic states, the electronic ground state of 2A12A1 symmetry and the first electronically excited state of 2B22B2 symmetry. In a previous paper we reported on the feasibility of using the hyperfine splittings, specifically the Fermi-contact interaction, to determine the electronic ground state character of the excited vibronic states in the region just above the conical intersection; 10 000 to 14 000 cm−114 000 cm−1 above the electronic ground state. High-resolution spectra of a number of vibronic bands in this region were measured by exciting a supersonically cooled beam of NO2NO2 molecules with a narrow-band Ti:Sapphire ring laser. The energy absorbed by the molecules was detected by the use of a bolometer. In the region of interest, rovibronic interactions play no significant role, with the possible exception of the vibronic band at 12 658 cm−1,12 658 cm−1, so that the fine- and hyperfine structure of each rotational transition could be analyzed by using an effective Hamiltonian. In the previous paper we restricted ourselves to an analysis of transitions of the K⎯=0K−=0 stack. In the present paper we extend the analysis to transitions of the K⎯=1K−=1 stack, from which, in addition to hyperfine coupling constants, values of the AA rotational constants of the excited NO2NO2 molecules can be determined. Those rotational constants also contain information about the electronic composition of the vibronic states, and, moreover, about the geometry of the NO2NO2 molecule in the excited state of interest. The results of our analyses are compared with those obtained by other authors. The conclusion arrived at in our previous paper that determining Fermi-constants is useful to help characterize the vibronic bands, is corroborated. In addition, the AA rotational constants correspond to geometries that are consistent with the electronic composition of the relevant excited states as expected from the Fermi-constants

    Multiple episodes of star formation in the CN15/16/17 molecular complex

    Full text link
    We have started a campaign to identify massive star clusters inside bright molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex is the first example of our study. The region is characterized by the presence of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII region identified in the radio, several young stellar objects visible in the MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm continuum emission revealing the presence of cold dust. Given its position on the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region was thought to be a very massive site of star formation in proximity of the CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the region's properties were known only through photometry and its kinematic distance was very uncertain given its location at the tangential point. We aimed at better characterizing the region and assess whether it could be a site of massive star formation located close to the Galactic Center. We have obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the brightest members. We have additionally collected data in the radio, sub-mm and mid infrared, resulting in a quite different picture of the region. We have confirmed the presence of massive early B type stars and have derived a spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170 M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O star, confirmed by the excitation/ionization status of the nebula. No HeI diffuse emission is detected in our spectroscopic observations at 2.113\mu m, which would be expected if the region was hosting more massive stars. Radio continuum measurements are also consistent with the region hosting at most early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3 presented in reduced resolutio

    Self-bias modulates saccadic control.

    Get PDF
    We present novel data on the role of attention in eliciting enhanced processing of stimuli associated with self. Participants were required to make pro- or anti-saccades according to whether learned shape-label pairings matched or mismatched. When stimuli matched participants were required to make an anti-saccade, and when the stimuli mismatched a pro-saccade was required. We found that anti-saccades were difficult to make to stimuli associated with self when compared to stimuli associated with a friend and a stranger. In contrast, anti-saccades to friend-stimuli were easier to make than anti-saccades to stranger-stimuli. In addition, a correct anti-saccade to a self-associated stimulus disrupted subsequent pro-saccade trials, relative to when the preceding anti-saccade was made to other stimuli. The data indicate that self-associated stimuli provide a strong cue for explicit shifts of attention to them, and that correct anti-saccades to such stimuli demand high levels of inhibition (which carries over to subsequent pro-saccade trials). The self exerts an automatic draw on attention
    • …
    corecore